
PREMIER MINISTRE

Secrétariat général
de la défense
et de la sécurité nationale

Agence nationale de la sécurité
des systèmes d’information

Paris, le XXX
N◦ YYY/ANSSI/SDE/PSS/CCN
Référence : ANSSI-CC-xxx-P-xx/i.j

WOOKEY SECURITY TARGET EVALUATION

51 boulevard de La Tour-Maubourg - 75700 PARIS 07 SP

NOTE: this is not an official security target.
This document has been produced for the Inter-CESTI challenge
(as a security target template on the test vehicle of the challenge)

WooKey Security Target Evaluation

Modifications logs

1.0 16/09/2019 Final version of the document
1.1 30/09/2019 Small fixes

ANSSI-CC-xxx-P-xx/i.j 1/37

WooKey Security Target Evaluation

Contents
1. Introduction 4

1.1. Product identification . 4

2. Product description 4
2.1. Product . 4
2.2. Product hardware architecture . 4

2.2.1. WooKey main SoC: STM32F439 . 5
2.2.2. Data storage . 5
2.2.3. Touch screen . 5
2.2.4. Authentication tokens: using the Javacard framework 5

2.3. Product usage description . 7
2.4. Product software architecture . 7

2.4.1. WooKey general architecture overview . 7
2.4.2. Defense in depth strategy . 8
2.4.3. EwoK microkernel . 9
2.4.4. Safe languages: using Ada . 10
2.4.5. Formal methods . 10
2.4.6. User data confidentiality . 10
2.4.7. External tokens and user authentication . 11
2.4.8. Nominal mode software design . 12
2.4.9. DFU mode software design . 12

2.5. Product life-cycle . 15
2.6. Product environment description . 16
2.7. Product typical users description . 17
2.8. Product evaluation perimeter . 17

3. Environment hypothesis description 18

4. Sensitive assets description 19

5. Threats description 21
5.1. Attackers profiles . 21
5.2. Threats . 21

6. Security functions description 23

A Mappings 28
1.1. Assets - Threats . 28
1.2. Threats - Security Functions . 29

ANSSI-CC-xxx-P-xx/i.j 2/37

WooKey Security Target Evaluation

B Details on cryptography used in WooKey 30
2.1. Keys/assets generation . 30
2.2. The Secure Channel with the tokens . 30

2.2.1. Secure channel core . 30
2.2.2. Local keys (enc/dec)ryption . 32

2.3. DFU and Firmware encryption/signature details . 35
2.4. User data encryption details (AES-256-CBC-ESSIV) 36
2.5. Random generation . 37

ANSSI-CC-xxx-P-xx/i.j 3/37

WooKey Security Target Evaluation

1. Introduction
This document presents the WooKey security target evaluation, and as so it has a synthetic approach
regarding the technical internals of the product. The curious reader can refer to the exhaustive on-
line documentation [2] as well as the source code [3] for more details about the product rationale,
architecture and implementation.

1.1. Product identification
The WooKey hardware revision is the publicly released 1.6 version. The firmware version is the
public stable release covered by the manifest snapshot manifest 20190903.xml file that can be
found here [1]. This manifest file covers all the tagged versions of all the repositories needed to
compile the firmware under evaluation.

2. Product description
WooKey is a self-encrypting USB device based on four hardware components:

– A motherboard PCB featuring a SoC (System-on-Chip) microcontroller embedding a dedicated
firmware. This part will be called the platform in the sequel.

– A screen PCB and a screen that handle interactions of the en user with a screen (this PCB does
not embed specific advanced algorithmic or firmware).

– A smart card (more specifically a Javacard) that embed a Secure Element (SE) whose purpose
is to safely store the sensitive secrets at rest.

– An SD card that can be inserted/extracted from the platform. This SD card contains the user
data in an encrypted from, ensuring data at rest confidentiality.

WooKey exposes to kinds of USB devices in its life-cycle corresponding to two operation
modes:

• WooKey’s nominal mode consists of exposing an mass storage USB device to a host, and
transparently (de)encrypting data on the SD card after a user authentication. The platform must
securely manage both the cryptographic and authentication materials along the user data path.

• The DFU mode is dedicated to secure firmware upgrades and exposes a DFU class device. This
critical phase of the platform life cycle must be protected, and this will be explained how in the
sequel of the document.

2.1. Product

2.2. Product hardware architecture
The architecture of WooKey is open hardware. The main motherboard and screen PCB layouts can
be found here [4, 5].

ANSSI-CC-xxx-P-xx/i.j 4/37

WooKey Security Target Evaluation

2.2.1. WooKey main SoC: STM32F439

We focused on the STM32F439 despite its lack of integrated High Speed PHY, as this SoC was the
closest to our needs. This specific choice among the ST Cortex-M family has been further driven by
two main aspects:

• On the software side, the STM32 Cortex-M4 SoCs have been widely studied in the recent years.
Many efforts have been put in porting safe languages such as ADA and Rust to these processors.

• The STM32F439 has a specific cryptographic acceleration coprocessor named STM32 hardware
CRYP engine, which comes handy when dealing with encryption/decryption for high-speed
data exchanges. A Hardware True Random Number Generator (TRNG) is also present.

Though this SoC has an integrated USB Full Speed PHY (12 Mb/s capable), it needs an external
PHY to achieve High Speed (480 Mb/s). The communication between the SoC and the PHY is done
using a ULPI interface, which is a standardized interface for USB 2.0.

2.2.2. Data storage

We have chosen to store the encrypted user data on external SD cards. They offer large storage capac-
ities for an affordable cost with a possible expansion of the USB thumb drive capacity by switching
the SD card. Compared to raw flash modules, there is no need to handle a complex FTL (Flash
Translation Layer) since the firmware embedded in the SD card takes care of this. The SDIO (Secure
Digital Input Output) bus only transfers encrypted data blocks on WooKey, which reduces the interest
of compromising the SD card firmware and performing Man In The Middle attacks.

2.2.3. Touch screen

In order to limit the smartcard PIN code exposition and defeat Man In The Middle attacks on the
USB bus or in a compromised host [11], we have decided to include a user input interface directly
on the platform. This allows confining the PIN in the WooKey device. Among the possible input
devices technologies, we have chosen the TFT-LCD ILI9341 with a AD7843 touch screen component.
This allowed us to design a randomized PIN pad that makes movements observation attacks more
complex [26]. We drive the touch screen from the STM32 SoC using the SPI bus where both the
ILI9341 and AD7843 are slaves.

2.2.4. Authentication tokens: using the Javacard framework

A strong asset in the security approach of WooKey is the usage of an external authentication token.
This allows to authorize data encryption and decryption operations and firmware updates only if a
valid token is inserted and the user has provided the legitimate PIN codes using the touch screen.

We emphasize the fact that the external token does not solely serve a logical presence purpose:
this critical element is actively used as a safeguard, through cryptographic operations, when a sensitive
action is initiated. Using an external token with a strong user authentication allows us to exclude many
attack scenarios where the USB device is lost by the legitimate user. If the hardware and software

ANSSI-CC-xxx-P-xx/i.j 5/37

WooKey Security Target Evaluation

Figure 1: WooKey product overview

design are sound and if the decryption master secrets are stored in the token, an adversary will only
be able to observe and abuse the pre-authentication modules of WooKey, and hence all the post-
authentication critical modules are safe.

This however implies to handle the cryptographic and authentication material securely.
This is the reason why we have decided to use a secure element to perform this task. Instead of
soldering the secure element on the main board, an external authentication token is used (namely a
smart card). this latter alternative has been chosen for security reasons: splitting the platform and the
user token yields in a strong two-factors authentication scheme.

Finding a certified secure element that can be programmed without having NDAs and buying
large quantities is not an easy task. This is particularly true if one wants to have a bare-metal access
to the chip, e.g. to implement its own OS.

The attempts to bring secure elements technology to the public domain have emerged through
VM-backed languages. The user code is confined in a Virtual Machine and the resources of the
platform are abstracted with standard and documented APIs. This isolation serves two purposes. First,
the low-level layers are protected against tampering, and the isolated applications cannot interfere
with each other. Secondly, since the Virtual Machine API is standardized, there is no need to access
low-level proprietary information to implement useful algorithms.

Javacard is the only widely available framework to offer a Common Criteria certification, thus
we have chosen to focus on this platform. More specifically, we have developed and tested our applet
on EAL 4 certified NXP JCOP J3D081 2.4.2 smartcards [27]. The applets do not make use of any
proprietary API, and should be compatible with all Javacard 3.0.1 compliant cards.

ANSSI-CC-xxx-P-xx/i.j 6/37

WooKey Security Target Evaluation

2.3. Product usage description
WooKey must be plugged into a USB host device interface (the host device is usually a laptop or
a working station PC). The end user must introduce his smart card in the dedicated connector on
WooKey in order to unlock the device after an authentication sequence.

The authentication sequence is composed of the following steps:

1. When the smart card is detected in the dedicated connector, a pin pad is shown to the end user
on the screen.

2. A first PIN (called the PetPIN) is introduced by the user on the touch screen. This PetPIN is
used to initiate an ECDH mutual authentication between the device SoC and the smart card
through a key derivation. The smart card allows only a limited number of bad PetPINs, and
locks/self-destroys itself when this number is reached.

3. If the PetPIN is correct, a secret sentence called the PetName and stored inside the smart card is
sent through the secure channel to the WooKey device. This sentence is printed on the screen,
and the user is asked to compare it to the one he configured at device setup time, and to validate
or decline it.

4. If the user validates the PetName, he is asked to provide a new PIN called the UserPIN. This
PIN fully unlocks the smart card when it is correct (or locks/self-destroys the smart card after a
number of bad PINs is reached).

5. When the smart card is fully unlocked with the UserPIN, the platform asks for the master secrets
that are used to decrypt the user data on the SD card. Any attempt to remove the smart card will
make these secrets erased and the platform reboot.

2.4. Product software architecture
2.4.1. WooKey general architecture overview

Classical USB thumb drives need at least two main software components: the USB stack to exchange
data with the host and the mass storage manager to store data. One of WooKey main features is to
encrypt the data at rest, which requires a dedicated cryptographic module to encrypt/decrypt this data.
WooKey must securely manage both the cryptographic and authentication materials along the user
data path.

The data path goes through three logical modules to read and write data from/into the device:

1. The USB module handles the USB communication with the host.

2. The SD module manages the mass storage device and read/write of encrypted data.

3. An untrusted cryptographic module: it shares memory space with the USB and SDIO tasks,
and its job is to trigger encryption and decryption in the underlying CRYP hardware module
(the CRYP module is the dedicated AES coprocessor inside the STM32 F439 MCU).

ANSSI-CC-xxx-P-xx/i.j 7/37

WooKey Security Target Evaluation

WooKey software modules

Token
Crypto External TokenPINTouch Screen

Mass Storage USB PHYSDIO Z USB

Modules handling very sensitive information (authentication, master keys)

Modules handling sensitive information (keys, user PIN)

Modules handling less sensitive information (user data path)

Figure 2: General software architecture of WooKey

The data path is isolated from the authentication path: this last path involves two software
modules:

1. A trusted cryptographic module: this module is confined and isolated from the other tasks. It
is in charge of setting up the CRYP key registers with the secret AES key derived from the
external authentication token. It is also in charge of managing all the communication with this
token (through an ISO7816 driver).

2. The PIN module that is in charge of user GUI (Graphic User Interface) and interactions through
the touch screen, such as PIN input and PetName printing.

2.4.2. Defense in depth strategy

We retained several security requirements to bring to the WooKey platform a near state-of-the-art
security level. In the first place, we use the MPU to protect the most sensitive assets while enforcing
the least privilege principle. A dedicated microkernel is responsible for configuring the MPU. This
microkernel is also implemented in a safe language for reasons described in 2.4.4..

Advanced in-depth mitigation mechanisms are also used. Stack canaries with proper random-
ness are configured by the compilation toolchain to limit stack overflows. In each task, the stack
(lower) and the heap (upper) limits are guarded by dedicated MPU regions. Heap overflow protec-
tions (allocation randomization, heap canaries and consistency checks) are also implemented.

W⊕X is enforced by the microkernel: non-executable data regions and non-writable text regions
ensure that no data payload harnessed by the attacker becomes directly exploitable (leaving only
Return-oriented and Jump-oriented programming gadgets as a potential threat). The W⊕X is proven
by a formal framework discussed in 2.4.5..

Unfortunately, the small RAM size and the lack of virtual memory rules out any useful ASLR
(Address Space Layout Randomization) due to a shoestring entropy.

ANSSI-CC-xxx-P-xx/i.j 8/37

WooKey Security Target Evaluation

2.4.3. EwoK microkernel

All the software modules are isolated thanks to the EwoK microkernel. Most of modern 32-bit micro-
controllers have a Memory Protection Unit and a processor with at least two CPU privilege levels (the
so-called user mode and supervisor mode). The MPU is a programmable unit that allows privileged
software, often a kernel, to define memory access permissions in order to isolate memory regions.
EwoK uses this mechanism to enforce confinement and privilege separation between tasks executed
in user mode, so that they cannot break out of their address space.

Implementing versatile memory isolation using the MPU is a real challenge because of its inner
limitations: only 8 memory regions are simultaneously allowed, and strict alignment constraints must
be fulfilled [19]. Such limitations explain why EwoK currently cannot execute more than 8 user tasks,
which is enough for the WooKey use case and many embedded contexts.

WooKey makes use of the following features in order to bring a balanced (yet strict) security
versus performance trade off:

• Access control to devices and resources: Access by a task to any hardware resource (device,
timer) or software resource provided by the kernel (IPC, shared memory) is managed by a fixed
and immutable set of permissions. To avoid unexpected side effects, declaration and setup
of these resources can only be done during a first initialization phase, after which requesting
further resources is prohibited for the tasks. Registered devices are mapped by the MPU in the
tasks’ address space. A difficulty arises when a user mode driver claims a hardware component
that must be shared with other tasks.

For example, when a task requires access to a specific GPIO (General Purpose Input/Output)
port/pin, it would be dangerous to map the whole GPIO port registers in its address space as it
would interfere with devices controlled by some other tasks. We found that the proper solution
here is to use specific syscalls so that the kernel can strictly control the access to the GPIO pins.

• DMA: An efficient implementation requires using DMA (Direct Memory Access) to avoid slow
byte-per-byte copies of large amounts of data. Nonetheless, performance comes at a cost: the
DMA engine bypasses the MPU protection, putting at risk the whole system. Hence, controlling
the DMA transfers is a challenge solved in EwoK by introducing specific syscalls. These allow
the kernel to check that DMA requests are conforming to the security policy in place. Only
DMA transactions from memory to devices and devices to memory are allowed. Due to their
inherent pitfalls, memory to memory transactions are forbidden.

• Fast interrupts acknowledgement: Some hardware devices such as the smart card generate in-
terrupts that must be acknowledged within a very tight time frame to avoid timeouts. Other
components like the touch screen put pressure on the kernel with interrupts bursts. To deal with
these constraints, we designed a simple yet effective system to quickly acknowledge interrupts
and to limit as much as possible the overhead of the user mode drivers.

• Posthook mechanism: Posthook instructions define a restricted high level language that allow to
read or to set some bits in specific hardware registers when an interrupt occurs. For each kind
of interrupt, a driver can use such posthook instructions, that are synchronously interpreted and

ANSSI-CC-xxx-P-xx/i.j 9/37

WooKey Security Target Evaluation

executed by the kernel, in order to quickly acknowledge hardware interrupts. Posthooks are an
interpreted boolean logic, not executable code.

• IPC: Tasks may communicate using synchronous or asynchronous IPC. The inter-tasks IPC
permission matrix is statically defined at build time to avoid improper access or information
leakage.

• Resource release: For least privilege enforcement, a specific syscall is dedicated to definitely
release resources. Devices are then fully unmapped from a task’s memory space.

2.4.4. Safe languages: using Ada

Most of kernels are written in C with some assembly. The major drawbacks of the C language are its
proneness to coding errors. Out-of-bound arrays access, integer overflows and dangling pointers are
difficult to avoid due to the weakly enforced typing. Such bugs might be devastating when exploited
in a privileged context.

EwoK uses Ada, a language often chosen for building high-confidence and safety-critical ap-
plications [25, 8]. It is a strongly typed language that supports bare-metal programming and that
enforces type checking both at compile time and at run time. Hence, more than 80% of the critical
vulnerabilities (as per studies) could be avoided thanks to features inherent to this language.

2.4.5. Formal methods

Formal methods allow to prove the correctness of a design and/or of an implementation with respect
to some predefined properties using mathematically based techniques. This approach fits well with
microkernels.

We use SPARK [7] and the GNATprove tool [6] to prove that the kernel is free of run-time errors.
It would provide great ensurance of the kernel robustness, and it would allow to remove Ada run-time
checks, which would slightly improve the kernel performance.

Because of the impossibility to use Ada access types (similar to C pointers) with SPARK, only
some kernel components have been proven using GNATprove. Hence, we have focused the usage of
SPARK on components dealing with crucial security properties: among other assets, we prove that
EwoK configures the MPU in a way that always enforces the W⊕X paradigm. We finally emphasize
the fact that modules that are not proven in SPARK still benefit from Ada’s properties, including
runtime checks.

2.4.6. User data confidentiality

Full-Disk Encryption (FDE) has become a matter of concern and a topic of interest in applied cryp-
tography these last years. The high level features an end user expects are both data confidentiality
and integrity. Unfortunately, no ideal efficient solution exists nowadays since integrity expects ex-
tra data to be stored on the disk. This explains why most of FDE solutions only focus on user data
confidentiality, and this is also the case for WooKey.

We have decided to use AES-CBC-ESSIV [15] (e.g. used in Android FDE [17]) because of
performance reasons: the CBC mode is accelerated by the CRYP coprocessor of the STM32F439.

ANSSI-CC-xxx-P-xx/i.j 10/37

WooKey Security Target Evaluation

Although tweakable modes such as AES-XTS [14] are more popular and more resistant against block
malleability [22], we stress out that integrity is still at risk. With WooKey, we clearly state that
integrity is not ensured when a device or an SD card is lost: a straightforward solution for the end
user is to handle it in a higher layer (e.g. file system).

2.4.7. External tokens and user authentication

The smart card extractable tokens are a cornerstone of WooKey’s security. Since they are based on
EAL certified chips, they are entrusted with the sensitive secrets, e.g. the user data at rest AES-CBC-
ESSIV key and other assets.

Mutual authentication and secure channel: The main purpose of the cryptographic architecture
that we describe in this section is to protect the WooKey device from pre-authentication attacks.
That is to say, an attacker having access to the device but with only one of the two authentication
factors (the token or the user PIN) will not be able to recover sensitive assets. The main platform
and the external token are strongly bound thanks to a mutual authentication. The main SoC and the
token embed personalized ECDSA authentication key pairs, yielding in an authenticated ephemeral
ECDH (Elliptic Curve Diffie-Hellman) to derive AES-CTR, HMAC-SHA-256 session keys as well
as a random IV (Initialization Vector) value. This establishes a session with a secure channel over the
ISO7816 physical line with confidentiality, integrity and anti-replay properties. Forcing a mandatory
mutual authentication mitigates man-in-the-middle adversaries, and limits the attack surface against
malicious tokens and malicious ISO7816 masters.

Rogue tokens, PetPIN, PetName and UserPIN: When considering our threat model, an adver-
sary could steal the user PIN. The scenario is the following: the attacker first steals both the platform
and the token from the user while replacing them with ersatz in order to deceive the user1. When
the legitimate user enters the PIN and realizes that the device is fake, it is too late since the PIN
might have been sent over-the-air. In order to thwart such attacks, we use a two steps authentication
involving two PIN codes: the PetPIN and the UserPIN as presented in Stage 2 of Fig. 5. The PetPIN
partially unlocks the token while providing it along with the UserPIN fully unlocks it (to get sensitive
secrets). When providing the PetPIN, the token sends back the PetName: this is a secret sentence that
has been provisioned during setup by the user. This PetName is printed on the device screen allowing
the user to check it and decide knowingly to enter his UserPIN, thus impeding rogue tokens scenarios.

STM32 assets protection: Although sensitive assets are safe inside the smart card secure ele-
ment, this is less the case in the STM32F439 SoC internal flash. Hardware flash readout protections
are not bulletproof against adversaries performing fault attacks. This means that the platform ECDSA
keys are at risk when the device is lost. In order to protect such keys, we encrypt them using a key
derived from the PetPIN as represented in Stage 1 of Fig. 5. A straightforward – yet unsafe – way
of doing this is to use a standard Key Derivation Function such as PBKDF2 [23, 24]. This is risky
since the STM32F439 has not enough power to support the number of iterations recommended against
brute force attacks [13], knowing that users usually encode their PINs on few digits. We deal with
offline exhaustive search by making the external token derive the ECDSA assets decryption key from
the PetPIN PBKDF2 derived value: the adversary will need the slow and secure external hardware
that severely restricts brute force attacks.

1The open source and hardware aspects of the project facilitate it.

ANSSI-CC-xxx-P-xx/i.j 11/37

WooKey Security Target Evaluation

AUTH, DFU and SIG tokens: For the sake of security, we have decided to dedicate a different
token for the three main phases of the product. The AUTH token is used during the nominal mode and
stores the data at rest AES-CBC-ESSIV master key. The DFU token is committed to the DFU mode
and is in charge of managing the firmware decryption sessions keys (more on this in the dedicated
section 2.4.9.). Finally, the SIG token is not directly used with the device per se: it is specifically
devoted to protect the ECDSA firmware signature private key, derive encryption keys, and is used on
the firmware production platform (e.g. a PC). The three tokens use the two stages user authentication
and secure channel mounting protocol presented on Fig. 5 with dedicated ECDSA keys, PetPIN,
PetName and UserPIN for each one.

2.4.8. Nominal mode software design

This mode of operation is composed of five isolated user mode tasks, each one handling one peripheral
of the platform as presented on Fig. 3.

User data path: The USB module handles the USB stack to communicate with the host through
SCSI [10] commands. The SD software module manages the mass storage device on the SDIO bus.
The crypto module sits between these two modules, and drives the CRYP coprocessor. These three
modules are dedicated to the data path: user data is transparently (de)encrypted along this path once
the user is authenticated. In order to optimize the data flow, two shared DMA buffers are declared
by the USB and the SD tasks, through dedicated syscalls, to be used by the crypto task as sources or
targets for DMA transfers. Hence, the crypto task is able to program DMA transactions between the
USB and the SD module via the CRYP device, allowing transparent data packets (de)encipherment.

Authentication path: Interestingly, although the crypto task manages the data path, it has never
access to the storage master key: it only uses the CRYP device as a (de)encryption engine. All the
platform sensitive secrets follow an authentication path that is completely separated from the mass
storage data path. This ensures a defense in depth property for WooKey: compromising any of the
exposed USB, SD or crypto tasks will not lead to critical assets leakage.

Two other software modules (smart card and PIN tasks) are devoted to the authentication path.
The PIN task interacts with the touchscreen: it sends the PetPIN/UserPIN to (and gets the PetName
from) the smart card task using IPCs. The smart card module handles the AUTH token, dealing
with the ISO7816 layer and the secure channel, and gets the AES-CBC-ESSIV master key after a
successful user authentication. This key is injected in the CRYP dedicated memory mapped area (only
accessible to this task), allowing the crypto task to drive ciphering operations without knowing it.

2.4.9. DFU mode software design

Since firmware updates are usually the Achilles heel of embedded devices security, we have put
some efforts to have a flexible, robust and secure upgrade process through a dedicated DFU mode of
WooKey.

Flexibility comes from the usage of the Device Firmware Update protocol as standardized by
the USB consortium [18]. This allows us to be compatible with existing classic tools.

Robustness is not so easily achievable because such devices are often not self-powered and may
be disconnected at any time. We present how a flip-flop design reaches such a goal. A first – yet
insufficient – fence against attacks is to use a dedicated button on the board to trigger the DFU mode

ANSSI-CC-xxx-P-xx/i.j 12/37

WooKey Security Target Evaluation

EwoK

PIN code
manager

Smart card

USB
SCSI stack

crypto

mass storage
manager

(SD) IPC

IPC

DMA
SHMSHM

DMA

declaredeclare
USB FS/HS
memory mapped
device

SDIO
memory mapped

device

ISO7816
(USART)

memory mapped
device

CRYP Key injection
only

Screen
memory mapped

device

Touch screen
memory mapped

device

(de/en)cryption requests only

DMADMA

CRYP
DMA DMA

Figure 3: Software architecture – WooKey nominal mode

only with physical access. This thwarts remote attacks targeting unsolicited upgrades. Security is
ensured by cryptographic guarantees as well as defense in depth using our microkernel.

STM32 Flash Memory

D
ua

l-
ba

nk
(2

M
B

)

B
an

k
1

=
FL

IP
B

an
k

2
=

FL
O

P

D
FU

m
od

e
ta

sk
s

N
om

in
al

m
od

e
ta

sk
s

DFU 2

Firmware 2

Boot Info

DFU 1

Firmware 1

Boot Info
Loader

USB SCSI
SDIO
crypto

smart card
pin

kernel

USB DFU
Flash
crypto

smart card
pin

kernel

Figure 4: Overview of WooKey flip-flop layout

Flip-flop design: Because MCUs have a quite limited volatile memory, firmware upload and
verification have to be performed in-place in the flash area where it will be executed. This inclined
us to adopt a flip-flop mechanism ensuring software redundancy in order to handle file corruption
(hazardous disconnection, corruption, invalid signature, etc.).

Fig. 4 provides a high level logical view of the flash layout. The 2 MB dual-bank of the
STM32F439 SoC internal flash is split in two. The first bank consists of the flip partition. It con-

ANSSI-CC-xxx-P-xx/i.j 13/37

WooKey Security Target Evaluation

tains the initial loader, some boot information, Firmware 1 which encapsulates the kernel and the
tasks of the nominal mode, and DFU 1 that contains the kernel and the tasks of the DFU mode. The
second bank is a replica of the first one with a mirrored layout containing a different version for
Firmware 2 and DFU 2. The advantage of dual-banking is that a bank (the one being executed) can
be write-protected with hardware ensurance, while the other bank is being updated.

The Boot Information section contains the current state of the firmware in the bank, namely a
version number, a flag indicating if the last update has been consistently achieved, and a SHA-256
hash value to be checked by the initial loader. This loader is not upgradable but is very minimal
with no I/O interactions (except for the DFU button). Since downgrading can be a boon for the
adversary [9], strict anti-rollback is enforced both during the upgrade phase and at boot time.

Firmware signature and encryption: In order to ensure the firmware authenticity, we apply an
ECDSA signature with a private key enclosed in the SIG token on a trusted dedicated host. A straight-
forward way of implementing the signature verification is to embed the ECDSA public key in the
WooKey platform and check the signature after a firmware is written in flash (writing the firmware
before checking it is unavoidable because of a very limited embedded RAM size). The flag in the
boot information sector is flipped to a proper value if and only if this check is consistent. Since we
want strong user authentication, the DFU token is used along with the PINs to validate the legitimate
user presence.

Such a strategy suffers from two major drawbacks. First, the DFU token is uncorrelated to
the update procedure (it is only used for access control), meaning that time of check to time of use
(TOCTOU) attacks are possible. Secondly, this process is inherently susceptible to fault attacks.
Indeed, a voltage glitch or an EM pulse performed at the right timing on the STM32 [16, 21, 12]
could completely bypass the signature check, yielding in a malleable binary in flash and a full privi-
leged compromise of the platform with another fault at boot time. As we have already stated, secure
elements of the tokens are on the other hand protected against faults.

To limit such fault attacks, we use actively the DFU token during the whole update process as
an oracle to derive session keys for firmware decryption using a dedicated enclosed secret key. Since
the firmware is deciphered on-the-fly using keys unknown to the attacker, the data in flash is still
malleable but its value is now not controlled by the adversary. Fig. 6 illustrates how the platform
opens a session with the token and asks for key derivation to handle successive chunks. As we can
see on the figure, we have designed a dedicated simple file format for update binaries. It consists of a
header HDR followed by a body of encrypted chunks. The header is composed of metadata regarding
the file (total size, version, chunks size, etc.), the ECDSA signature, an IV (initial value to produce
keys) and HMAC-SHA-256 of HDR (i.e. the header except the HMAC itself). The signature covers
the metadata and the firmware binary in clear (since we have to check this signature after writing clear
data in flash). To avoid any padding related issue, we use an AES-CTR mode for firmware ciphering.
The rationale behind the HMAC is to avoid malleability of the header and to early prevent opening
illegal sessions with the token (solely counting on the signature implies a late detection). We also do
not want the adversary to use the DFU token as an oracle to produce keys for any IV value (only the
SIG token produces this HMAC).

It is fair to say that if an attacker is able to control one of the session keys values through a fault
(e.g. by zeroing it), he will get back the control on data written to flash. He would still need to perform
a fault on the signature check as well as on the hash check on boot, and more importantly to bypass the

ANSSI-CC-xxx-P-xx/i.j 14/37

WooKey Security Target Evaluation

DFU token authentication and secure channel. This theoretical multi-faults and multi-bypass scenario
seems quite complex to achieve.

Stage
1

Stage
2

Platform Token

User enters PetPIN
DK=PBKDF2(PetPIN)−−−−−−−−−−−−−→

KPK=DecDK(ELK)
KPK←−−−−−−−−−−−−−

PK=DecKPK(EPK)
Establish secure channel←−−−−−−−−−−−−→

PetPIN PetPIN OK?
User checks PetName PetName PetName
User enters UserPIN UserPIN UserPIN OK?

Secrets Send sensitive data

DK: derived key from PetPIN

ELK: encrypted local key (stored in the token)

KPK: platform keys encryption key

EPK: encrypted platform keys

PK: (decrypted) platform keys

Send in clear−−−−−−−−−−−−−−→
Send inside secure channel

Figure 5: Sensitive data protection in WooKey

DFU mode defense in depth: As for the nominal mode of WooKey, we want the DFU mode
to be protected against software attacks since a history of exploited vulnerabilities in such mode
exists [20, 28]. Hence, we adopt the same defense in depth approach described in 2.4.8. using five
isolated tasks above the microkernel and software mitigation (see Fig. 7).

The USB task implements the DFU standard, the flash manager writes the chunks in non-volatile
memory, and the crypto task configures the DMA requests to and from the CRYP engine for transparent
decryption. The smart card module handles the user authentication with the DFU token (with the
PINs provided by the dedicated task), and manages the session keys derivation. With new firmware
chunks, associated keys are derived by the token and injected in the CRYP registers. When the firmware
decryption is over, the flash manager task definitely releases the flash device. This ensures that the
signature can be verified by the smart card task using the HASH engine, and the Boot Information
section can be atomically updated, without time of check to time of use issues.

2.5. Product life-cycle
The WooKey device has two main phases:

1. The provisioning phase: this is the early phase of the product. The WooKey main board is in
RDP 0 (not locked), and can be programmed through JTAG/SWD. The WooKey AUTH/DFU/SIG
tokens are unlocked with default GlobalPlatform keys. In this phase, the user compiles an initial
firmware choosing the production profile (where the USART is disabled and full protections
in the bootloader are active). After firmware compilation, the user flashes it in the board, and
uses a third party tool to migrate the board to RDP2 (Readout Protection level 2). Moreover,

ANSSI-CC-xxx-P-xx/i.j 15/37

WooKey Security Target Evaluation

O
pen

session
C

hunk
0

C
hunk

n

Platform Token
Firmware = HDR——chunks HDR HMACKHDFU(HDR)

Begin decrypt session OK?
Session OK Extract IV from HDR

Process chunk 0 Derive Key 0 DK0=EncKDDFU(IV+0)

Decrypt chunk 0 DK0

...

Process chunk N Derive Key n DKn=EncKDDFU(IV+n)
Decrypt chunk N DKn

HDR: firmware header
KHDFU: HMAC secret key (stored in the token)

KDDFU: key derivation secret key (stored in the token)

DKi: derived decryption key number i

Send inside secure channel

M
ag

ic
Ty

pe

V
er

si
on

L
en

Si
gl

en
C

hS
z

Si
gn

at
ur

e

IV

H
M

A
C

(H
D

R
)

C
hu

nk
0

. . .

C
hu

nk
N

Si
gn

ed
Fi

rm
w

ar
e

Metadata
HDR

HDR Encrypted firmware chunks

on decrypted data

Figure 6: DFU cryptography protection in WooKey

the user programs the AUTH/DFU/SIG tokens with the respective applets and locks the Glob-
alPlatform keys with a third party tool. The user saves the generated private folder for future
key recovery or token programming, along with his new GlobalPlatform keys: these sensitive
data must be kept in a place. All these steps must be performed in a secure environment using
a disconnected and trusted PC host.

2. The final usage phase: the WooKey device and tokens are now fully configured and can be
deployed in unsafe environments. Whenever it is necessary to update the device, the user uses
his SIG token to sign a newly compiled firmware: compilation and signing must be performed
in a secure environment using a disconnected and trusted PC host. The signed firmware
can be deployed using the DFU mode of WooKey in an unsafe environment, with the user
authenticating with his DFU token.

2.6. Product environment description
The product can be used on typical workstations and laptops with no restrictions.

The product does not protect user data confidentiality when the full authentication sequence
has been performed: a fully unlocked WooKey exposes such decrypted data to the host, and a malware
on the host is then able to transparently read them.

ANSSI-CC-xxx-P-xx/i.j 16/37

WooKey Security Target Evaluation

EwoK

PIN code
manager

Smart card
&

integrity

USB
DFU stack

crypto

Flash
manager

IPC

key
schedule

auth

IPC

DMA
SHMSHM

DMA

declaredeclare
USB FS/HS
memory mapped
device

Flash bank
memory mapped

device

ISO7816/USART
memory mapped

device

CRYP Key injection
only

HASH
memory mapped device

DMA
Flash bank

Screen
memory mapped

device

Touch screen
memory mapped

device

(de/en)cryption requests only

CRYP
DMA DMA

Figure 7: Software architecture – WooKey DFU mode

While user data at rest confidentiality is covered, user data integrity is not protected. The user
must use complementary means to check his data integrity, e.g. using a file system with such features
implemented.

In the WooKey life-cycle, the out-of-the-box and non-configured device must be handled in a
safe environment.

2.7. Product typical users description
The only user that interacts with the product is the final user. He has therefore all rights on the
platform, meaning he can configure it, use it, flash it, upgrade it, sign new firmwares, etc.

Typical users are those who care about data confidentiality and trusted USB devices. Employ-
ees of firms handling sensitive or confidential data, and traveling with them. Firms/administrations
that use computers where only trusted devices must be plugged in. Military users who can loose their
devices in the field.

2.8. Product evaluation perimeter
The evaluation perimeter concerns the entire product, except the hardware and platform part of the
External Token (EAL 4 certified, see [27]). The embedded Javacard applets are part of the scope:
only the underlying IC, native cryptographic libraries and Javacard embedded OS are not since they
have been evaluated under the Common Criteria scheme.

The trusted platform (PC) on which firmwares are produced (compiled) and signed is also out
of the scope of the evaluation.

ANSSI-CC-xxx-P-xx/i.j 17/37

WooKey Security Target Evaluation

3. Environment hypothesis description

[H1]. WooKey properly configured

We consider the WooKey device as correctly configured and locked, namely:

• The SoC RDP2 (ReadOut Protection level 2) flash lock is active through the proper eFuses (via
dedicated software not included in the Tataouine SDK).

• The WooKey bootloader RDP2 check option is enabled (via the compilation configuration file).

• The WooKey bootloader flash lock option is enabled (via the compilation configuration file).

• The WooKey bootloader firmware header CRC32 check option is enabled (via the compilation
configuration file).

• The WooKey kernel reboot on panic option is enabled (via the compilation configuration file).

• The serial debug console is disabled for both bootloader and kernel (via the compilation con-
figuration file).

[H2]. Using three dedicated Javacard tokens

We suppose that the user is using the high security profile of the WooKey product (configurable using
Tataouine). Namely, three distinct physical tokens are used for each token role:

• AUTH: the user authentication token used for WooKey platform unlocking in nominal mode.

• DFU: the user token used for WooKey platform unlocking in DFU mode, and for updates.

• SIG: the token used on the firmware production platform for firmware signature.

[H3]. Javacard tokens properly configured, locked with PIN, with a reasonable maximum
PIN tries (typically 3)

We suppose that the Javacards are locked: the (default) global platform keys are modified with secret
values and using third party tools. In the WooKey security context, attackers without knowledge of
the secret GP keys must not be able to install new applets on the smart cards.

[H4]. Complex password

The user has set its own Pet Pin, Pet Name and User Pin using reasonable complex content. These
information are not known from the attacker.

[H5]. Tokens

The user only holds the AUTH token for everyday usage. DFU token is kept safe and only used when
updating the platform. SIG token is kept safe and only used in a safe context, on a unaltered safe
PC host when signing firmware.

ANSSI-CC-xxx-P-xx/i.j 18/37

WooKey Security Target Evaluation

[H6]. Access

The attacker has a full access to the open source and open hardware data, is able to reproduce a board,
firmwares and flash new Javacards (AUTH/DFU/SIG tokens). The attacker has a full physical access
to the device.

4. Sensitive assets description

[A1]. User data

Stored in the microSD card. (De/En)crypted using the Master Secret Key MSK [A9].
Security need: confidentiality

[A2]. UserPIN

The UserPIN is used to fully unlock the data storage private key MSK [A9] stored in the Javacard.
Security need: confidentiality

[A3]. PetPIN

The PetPIN is used to initiate the mutual authentication between the device and the Javacard token.
Security need: confidentiality

[A4]. PetName

Personal passphrases which allows to identify the tokens (each token has its passphrase). It is printed
on the screen and proves that the mutual authentication of both devices worked and that the Javacard
is not tempered with.
Security need: confidentiality, integrity

[A5]. Derived Key (DK)

Key derived from the PetPIN [A3] using the PBKDF2 algorithm. It is used by the tokens to decrypt
the Encrypted Local Key ELK [A6].
Security need: confidentiality

[A6]. Encrypted Local Key (ELK)

Key stored on the token. It is the encrypted form of the KPK [A7] using the Derived Key DK [A5].
Security need: confidentiality, integrity

ANSSI-CC-xxx-P-xx/i.j 19/37

WooKey Security Target Evaluation

[A7]. Key Platform Key (KPK)

Key computed by the token from the ELK (Encrypted Local Key) [A6] using a key derived from the
PetPIN [A3]. It is sent to the platform after decryption to decrypt the Platform Keys PK [A8].
Security need: confidentiality

[A8]. Platform Keys (PK)

Keys stored ciphered on the platform by the Key Platform Key KPK [A7] and used by the platform to
establish the secure channel with the token. PK include both sensitive assets: the ECDSA private key
of the platform to establish the secure channel (must remain confidential and non tampered with), the
ECDSA firmware verification public key (must remain non tampered with).
Security need: confidentiality, integrity

[A9]. Master Secret Key (MSK)

This key is the master secret key used to encrypt user data on the microSD card. It is stored in the
AUTH token, and sent to the platform the token is fully unlocked (UserPIN [A2] and PetPIN [A3]
presented).
Security need: confidentiality, integrity

[A10]. Key HMAC Device Firmware Update (KHDFU)

Key stored in the DFU and SIG tokens, used to verify the integrity of the update header by the use of
an HMAC.
Security need: confidentiality, integrity

[A11]. Key Derivation Device Firmware Update (KDDFU)

Key Derivation Device Firmware Update (KDDFU), used to derive firmware chunk encryption and
decryption. This key is stored in the DFU and SIG tokens.
Security need: confidentiality, integrity

[A12]. Derived Decryption Keys (DKi)

These keys are derived by the DFU and SIG token using the Key Derivation Device Firmware Update
KDDFU [A11]. The derivation mechanism encrypts a counter IV+i depending on the chunk number
i to produce DKi.
Security need: confidentiality

[A13]. Tokens ECDSA Secure Channel Private Keys

Each token (AUTH/DFU/SIG) has an ECDSA key pair used for secure channel establishment.
Security need: confidentiality, integrity

ANSSI-CC-xxx-P-xx/i.j 20/37

WooKey Security Target Evaluation

[A14]. SIG token ECDSA Firmware Signature Private Key

The SIG token stores the ECDSA firmware signature key used to sign firmwares.
Security need: confidentiality, integrity

5. Threats description

5.1. Attackers profiles
We consider that the adversary has logical and/or physical access to the device. He may try to read
the data by connecting the device to a host or by reading the mass storage cells when the device is
lost or stolen (so-called data at rest). We also consider physical tampering with the internal storage,
firmware, or any other component present on the actual device. Logical attacks are in the scope,
e.g. when connecting the device to an untrusted host that exploits software stacks vulnerabilities
(USB stack, etc.), or by abusing any interface with malformed data. Our threat model also captures
pre-authentication (i.e. before legitimate users authenticates to the device) side channel and fault
injection attacks.

We do not consider threats where the legitimate user leaves his WooKey device connected to a
PC host and fully unlocked. Whenever a legitimate user leaves his device, he must voluntarily lock
the device, either by ejecting the token (only ejecting it is sufficient, no need to fully remove it), or by
pressing the lock button on the authenticated touch screen GUI. The consequence of either of these
actions is a reset of the WooKey device, necessitating a full unlocking whenever the user needs to
access his data again.

5.2. Threats
[T1]. Data at rest

With a logical or physical access to the TOE, the attacker is able to retrieve the stored data.

[T2]. Persistent firmware corruption

The attacker corrupts the firmware with either a software or a hardware mean in order to create a
persistent modification on the flash memory. This allows him to get access to all data stored or
received by the device.

[T3]. Token cloning

The attacker clones a valid token making him able to authenticate with a platform.

[T4]. Token theft

The attackers steals a valid token allowing him to interact with it. He is thus able to understand how
it works and also retrieve information that it stores.

ANSSI-CC-xxx-P-xx/i.j 21/37

WooKey Security Target Evaluation

[T5]. Device theft

The attacker steals a valid device allowing him to interact with it. He is thus able to understand how
it works and also to retrieve information that it stores.

[T6]. Device cloning

The attackers clones a valid device making him able to have an authenticate platform, using the same
secrets as the original device.

[T7]. Pre-authentication leak exploitation

The attacker is able to exploit a pre-authentication leak through side channel attacks to retrieve sensi-
tive assets.

[T8]. Device upgrade exploitation

The attacker exploits a weakness in the device upgrade state-machine (unauthenticated firmware,
corrupted firmware image injection, a race condition, etc.) in order to load a malicious firmware.
This allows him to get access to all data stored or received by the device.

[T9]. Memory access

With a logical access the attacker gets access to the memory of the TOE to retrieve all loaded data or
key.

[T10]. Communication spying

The attacker probes the communication between the token and the platform in order to gather all data
that is transferred, and infers sensitive information/ways to perform further attacks.

[T11]. Firmware Downgrade

The attacker is able to downgrade the firmware version (anti-rollback bypass) by loading one that
contains a known vulnerability. He is then able to retrieve all data the of the device.

[T12]. Debug Access

The attacker takes advantage of the debug access available on the device to retrieve the data from
RAM or flash which may contain sensitive information.

[T13]. Malicious update

The attacker updates the firmware with a malicious firmware in order to steal the user’s related data.

ANSSI-CC-xxx-P-xx/i.j 22/37

WooKey Security Target Evaluation

6. Security functions description

[SF1]. PetPIN pre-authentication phase

Before unlocking the device storage, the user enters a first PIN, denoted PetPIN [A3], in order to
initiate the mutual authentication procedure between the smart card and the device. The number of
mutual authentication failures is limited by a counter stored in the smart card. The PetPIN try counter
is also limited in the smart card, however when the user enters his PetPIN PBKDF2 is performed with
the token to derive DK [A4] and decrypt ELK. The PetPIN is really sent to the token only once a
secure channel is mounted, a in this case a PetPIN failure counter is decremented if the PetPIN is not
OK.

[SF2]. PetName user validation

At mission preparation time, a pass phrase is set in the smart card internal memory. This passphrase is
returned by the token to the device if the mutual authentication succeeds and is printed out onscreen.
If this passphrase does not correspond to the one the user has previously set, the user is able to detect
that something went wrong (the device or the smart card has been tampered with). The user must stop
using the device usage immediately.

[SF3]. User authentication and MSK unlock

When [SF1] and [SF2] succeed, the user enters the User PIN. This PIN allows to unlock the smart card
MSK key [A8]: MSK is then transmitted to the device and injected in the STM32 CRYP cryptographic
coprocessor.

[SF4]. Secure channel

Excluding the PBKDF2 derived PetPIN, any communication between the device and the smart card is
transferred through a secure channel over the ISO716-3 line. This secure channel supports anti-replay
protection and ensures integrity and confidentiality of the transmitted data.

[SF5]. User data encryption

User data is stored in the device’s microSD. They are encrypted using the AES-CBC-ESSIV algo-
rithm, using a 256 bits key (the MSK [A8]). User data at rest integrity is not supported.

[SF6]. Hardened pre-authentication cryptographic actions

The overall cryptographic algorithms execution made before the complete authentication sequence is
protected against side channel attacks.

[SF7]. Device platform keys PK confidentiality

The device platform keys PK, used to authenticate the device against the smart card during the first
step of the authentication phase, are stored encrypted and can be decrypted only in association with
the PetPIN and the smart card as a cryptographic oracle.

ANSSI-CC-xxx-P-xx/i.j 23/37

WooKey Security Target Evaluation

[SF8]. Firmware resilience

In order to support upgrade corruption (voluntary or not) the firmware is duplicated and the upgraded
firmware is always the one not currently used. The newly updated firmware is activated only after
a full integrity check and signature validation in association with the authenticated firmware header
received during the upgrade sequence.

[SF9]. Differentiated upgrade mode and role

Upgrading the firmware requires a dedicated DFU token, which is separated from the mass storage,
nominal user, AUTH token. The complete key chain (including platform keys, smart card keys, and
so on) are segregated. The complete PIN chain (including PetPIN, userPIN and PetName) are also
segregated. Compromising the AUTH (resp. the DFU) token should not yield in compromising the
AUTH token.

[SF10]. Voluntary firmware upgrade mode

Booting to the DFU mode to perform a firmware upgrade is a voluntary action since it requires a user
button push at boot time.

[SF11]. Firmware authentication

In order to ensure the firmware authenticity, an ECDSA signature is computed with a private key
enclosed in the SIG token on a trusted dedicated host. The signature verification is performed using
the ECDSA public key embedded in the WooKey platform internal flash (part of the Encrypted Local
Keys ELK [A5]). This verification is performed during DFU after the firmware is written in flash.

[SF12]. Firmware upgrade anti-rollback

The firmware upgrade sequence checks the firmware version in the authenticated header. The version
must be greater than the current one to avoid any rollback upgrade (e.g. to exploit a vulnerability in
an old firmware).

[SF13]. Least privilege principle

The firmware relies on a microkernel architecture (EwoK) to enforce the least privilege principle by
isolating the drivers in their own address space. Drivers are implemented as user tasks with limited
access rights, and dangerous operations (such as DMA transfers) are subject to microkernel checks
enforcement.

[SF14]. MPU usage

The MPU is a programmable unit that allows privileged software, often a kernel, to define memory
access permissions in order to isolate memory regions. EwoK uses this mechanism to enforce con-
finement and privilege separation between tasks executed in user mode, so that they can’t break out
of their address space.

ANSSI-CC-xxx-P-xx/i.j 24/37

WooKey Security Target Evaluation

[SF15]. Debug access deactivated

JTAG port is deactivated. The flash internal memory is set in RDP2 mode, excluding debugger access,
any external read or write access to neither flash nor RAM memory.

ANSSI-CC-xxx-P-xx/i.j 25/37

WooKey Security Target Evaluation

References
[1] The manifest covering the firmware version evaluation. https://github.com/wookey-project/manifest/

blob/master/soft/snapshots/wookey_20190903.xml, 2019.

[2] The wookey project documentation. https://wookey-project.github.io/, 2019.

[3] The wookey project github repository. https://github.com/wookey-project, 2019.

[4] The wookey project main board pcb. https://github.com/wookey-project/hard-wookey-motherboard,
2019.

[5] The wookey project screen board pcb. https://github.com/wookey-project/hard-wookey-screen, 2019.

[6] ADACORE. GnatProve formal verification tool. https://docs.adacore.com/spark2014-docs/html/ug/en/
source/how_to_run_gnatprove.html.

[7] ALTRAN, ADACORE. SPARK programming language. https://www.spark-2014.org/.

[8] BRANDON, C., AND CHAPIN, P. The Use of SPARK in a Complex Spacecraft. ACM SIGAda Ada Letters 36, 2
(2017), 18–21.

[9] CHEN, Y., ZHANG, Y., WANG, Z., AND WEI, T. Downgrade Attack on TrustZone. arXiv preprint
arXiv:1707.05082 (2017).

[10] COMMITTEE, T. T. Scsi architecture. http://www.t10.org/scsi-3.htm.

[11] DEEG, M., AND SEBASTIAN, S. Cryptographically Secure? SySS Cracks a USB Flash Drive, 2009.

[12] DMITRY NEDOSPASOV, JOSH DATKO, T. R. Hardware Wallet Vulnerabilities. https://media.ccc.de/v/

35c3-9563-wallet_fail/oembed, 2018.

[13] DÜRMUTH, M., GÜNEYSU, T., KASPER, M., PAAR, C., YALÇIN, T., AND ZIMMERMANN, R. Evaluation of
standardized password-based key derivation against parallel processing platforms. In ESORICS 2012 (2012).

[14] DWORKIN, M. NIST SP 800-38E, Recommendation for Block Cipher Modes of Operation: The XTS-
AES Mode for Confidentiality on Storage Devices. https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-38e.pdf, 2010.

[15] FRUHWIRTH, C. New Methods in Hard Disk Encryption. na, 2005.

[16] GERLINSKY, C. Breaking Code Read Protection on the NXP LPC-family Microcontrollers. https:

//recon.cx/2017/brussels/resources/slides/RECON-BRX-2017-Breaking_CRP_on_NXP_LPC_

Microcontrollers_slides.pdf, 2017.

[17] GÖTZFRIED, J., AND MÜLLER, T. Analysing android’s full disk encryption feature. Journal of Wireless Mobile
Networks, Ubiquitous Computing, and Dependable Applications 5 (03 2014), 84–100.

[18] HENRY, T., RIVENBURG, D., AND STIRLING, D. Universal Serial Bus Device Class Specification for Device
Firmware Upgrade. Aug 5 (2004), 47.

[19] HOLDINGS, A. ARMv7-M Architecture Reference Manual. https://static.docs.arm.com/ddi0403/e/

DDI0403E_d_armv7m_arm.pdf, 2010.

[20] HOTZ, G., AND TEAM, C.-D. Limera1n exploit (souce code). https://github.com/Chronic-Dev/syringe/
blob/master/syringe/exploits/limera1n/limera1n.c, 2010.

[21] KREDER, K. Hardware Wallet Vulnerabilities. https://blog.gridplus.io/

hardware-wallet-vulnerabilities-f20688361b88.

[22] LELL, J. Practical malleability attack against CBC-Encrypted LUKS partitions, 2013.

ANSSI-CC-xxx-P-xx/i.j 26/37

https://github.com/wookey-project/manifest/blob/master/soft/snapshots/wookey_20190903.xml
https://github.com/wookey-project/manifest/blob/master/soft/snapshots/wookey_20190903.xml
https://wookey-project.github.io/
https://github.com/wookey-project
https://github.com/wookey-project/hard-wookey-motherboard
https://github.com/wookey-project/hard-wookey-screen
https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_run_gnatprove.html
https://docs.adacore.com/spark2014-docs/html/ug/en/source/how_to_run_gnatprove.html
https://www.spark-2014.org/
http://www.t10.org/scsi-3.htm
https://media.ccc.de/v/35c3-9563-wallet_fail/oembed
https://media.ccc.de/v/35c3-9563-wallet_fail/oembed
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38e.pdf
https://recon.cx/2017/brussels/resources/slides/RECON-BRX-2017-Breaking_CRP_on_NXP_LPC_Microcontrollers_slides.pdf
https://recon.cx/2017/brussels/resources/slides/RECON-BRX-2017-Breaking_CRP_on_NXP_LPC_Microcontrollers_slides.pdf
https://recon.cx/2017/brussels/resources/slides/RECON-BRX-2017-Breaking_CRP_on_NXP_LPC_Microcontrollers_slides.pdf
https://static.docs.arm.com/ddi0403/e/DDI0403E_d_armv7m_arm.pdf
https://static.docs.arm.com/ddi0403/e/DDI0403E_d_armv7m_arm.pdf
https://github.com/Chronic-Dev/syringe/blob/master/syringe/exploits/limera1n/limera1n.c
https://github.com/Chronic-Dev/syringe/blob/master/syringe/exploits/limera1n/limera1n.c
https://blog.gridplus.io/hardware-wallet-vulnerabilities-f20688361b88
https://blog.gridplus.io/hardware-wallet-vulnerabilities-f20688361b88

WooKey Security Target Evaluation

[23] MELTEM SÖNMEZ TURAN, ELAINE BARKER, WILLIAM BURR, AND LILY CHEN. Recommendation for
Password-Based Key Derivation, Part 1: Storage Applications. NIST Special Publication 800-132, National In-
stitute of Standards and Technology, 2010.

[24] PAUL A. GRASSI, JAMES L. FENTON, ELAINE M. NEWTON, RAY A. PERLNER,ANDREW R. REGENSCHEID,
WILLIAM E. BURR,JUSTIN P. RICHER. Digital Identity Guidelines, Authentication and Lifecycle Management.
NIST Special Publication 800-63B, National Institute of Standards and Technology, 2017.

[25] RUIZ, J. F. Going real-time with Ada 2012 and GNAT. ACM SIGAda Ada Letters 33, 1 (2013), 45–52.

[26] SAHAMI SHIRAZI, A., MOGHADAM, P., KETABDAR, H., AND SCHMIDT, A. Assessing the vulnerability of
magnetic gestural authentication to video-based shoulder surfing attacks. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (2012), ACM, pp. 2045–2048.

[27] SEMICONDUCTORS, N. Nxp j3d081 m59 df, and j3d081 m61 df secure smart card controller revision 2. https:
//www.commoncriteriaportal.org/files/epfiles/0860b_pdf.pdf, 2013.

[28] TEMKIN, K., AND SZEKELY, M. Fusée Gelée Exploit (souce code). https://github.com/

Cease-and-DeSwitch/fusee-launcher, 2018.

ANSSI-CC-xxx-P-xx/i.j 27/37

https://www.commoncriteriaportal.org/files/epfiles/0860b_pdf.pdf
https://www.commoncriteriaportal.org/files/epfiles/0860b_pdf.pdf
https://github.com/Cease-and-DeSwitch/fusee-launcher
https://github.com/Cease-and-DeSwitch/fusee-launcher

W
ooK

ey
Security

TargetE
valuation

A Mappings

1.1. Assets - Threats

Table 1: Mapping Assets - Threats
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

A1 X X X X X X X X X X
A2 X X X X X X X
A3 X X X X X X X
A4 X X X X X X X X
A5 X X X X X X X
A6 X X
A7 X X X X X X X
A8 X X X X X X X
A9 X X X X X X X X X

A10 X X
A11 X X
A12 X X X X X X X X X
A13 X X
A14 X X

X: applicable only to the AUTH token
X: applicable only to the DFU and SIG tokens
X: applicable only to all tokens
X: applicable only to the SIG token

A
N

SSI-C
C

-xxx-P-xx/i.j
28/37

W
ooK

ey
Security

TargetE
valuation

1.2. Threats - Security Functions

Table 2: Mapping Threats - Security Functions
SF1 SF2 SF3 SF4 SF5 SF6 SF7 SF8 SF9 SF10 SF11 SF12 SF13 SF14 SF15

T1 X X X X
T2 X X X
T3 X
T4 X X
T5 X X X X
T6 X
T7 X
T8 X X X
T9 X X X

T10 X
T11 X
T12 X
T13 X X X X

A
N

SSI-C
C

-xxx-P-xx/i.j
29/37

WooKey Security Target Evaluation

B Details on cryptography used in WooKey

2.1. Keys/assets generation
All the keys (with the exceptions described hereafter) implied in WooKey’s cryptography are gener-
ated on the trusted host PC that compiles and signs the firmwares using /dev/random source. It is
the end user’s responsibility to ensure proper entropy from this source (e.g. by feeding Linux entropy
pool with a smart card AIS31 certified TRNG random source).

The ephemeral session keys described in Appendix.2.2. are generated through the tokens AIS31
certified TRNG on one side, and through the STM32 non certified TRNG on the other side (see
Appendix.2.5.).

The PetPINs, UserPINs and PetNames are chosen by the user. It is the end user’s responsibility
to choose non trivial PINs and PetName.

2.2. The Secure Channel with the tokens
The secure channel is established between any token (AUTH/DFU/SIG) and the platform or the PC
(communication can be performed on a regular PC through PCSC for instance).

2.2.1. Secure channel core

The secure channel makes use of an authenticated ephemeral ECDH protocol that derives session
keys.

In order to establish the secure channel, an ECDSA key pair is used for the platform denoted
ECDSAplat f orm

priv and ECDSAplat f orm
pub respectively for the platform private and public key (they are parts

of asset PK [A8]). In our case, the platform is either WooKey or a host PC.
Another ECDSA key pair is used for the token, denoted ECDSAtoken

priv and ECDSAtoken
pub respec-

tively for the token private and public key (see asset [A13]). The token can be either of AUTH, DFU
or SIG type.

ECDSA is used with SHA-256 hash function over a choice of one of three possible curves:
FRP256V1, NIST SECP256R1 and BRAINPOOLP256R1.

The secure channel establishment supposes a master (initiator) and a slave (receiver). In the case
of WooKey, the master is always the platform or host PC, and the slave is always the token. Whenever
a secure channel must be established, the master randomly chooses a private scalar d and computes
Q = d×G where G is the generator of the elliptic curve. The master then sends over the ISO7816-3
line the public point Q and the ECDSA signature of Q: Q||ECDSA−SHA256(ECDSAplat f orm

priv ,Q). Q
is made of projective coordinates with Qz = 1, i.e. the equivalent affine coordinate, and the encoding
is simply the concatenation of the three coordinates Q = Qx||Qy||Qz with each coordinate being a big
endian big number on 256 bits.

The slave receives Q||ECDSA− SHA256(ECDSAplat f orm
priv ,Q), checks the signature using the

public key ECDSAplat f orm
pub , randomly draws d′ and computes Q′′ = d′×Q = d′× (d×G). The slaves

then sends overt the ISO7816-3 line Q′||ECDSA− SHA256(ECDSAtoken
priv ,Q′) with Q′ = d′×G =

ANSSI-CC-xxx-P-xx/i.j 30/37

WooKey Security Target Evaluation

Q′x||Q′y||Q′z with each coordinate being a big endian big number on 256 bits. The master receives this,
checks the signature using ECDSAtoken

pub , and computes Q′′ = d×Q′ = d× (d′×G).
Now both the master and slave have Q′′ = Q′′x ||Q′′y ||Q′′z with Q′′z = 1 to have the unique affine

representation of the point. Each party can compute a session key for encryption, a session key for
integrity, and an IV (Initialization Vector) for anti-replay:

• Encryption session key of 16 bytes (for AES-128-CTR): computed using
SHA256(′AES SESSION KEY ′||Q′′x), and keeping the first 16 bytes of the result,
with ′AES SESSION KEY ′ being a constant diversification string.

• Integrity session key of 32 bytes (for HMAC-SHA-256): computed using
SHA256(′HMAC SESSION KEY ′||Q′′x), with ′HMAC SESSION KEY ′ being a constant diver-
sification string.

• IV of 16 bytes: computed using SHA256(′SESSION IV ′||Q′′x), and keeping the first 16 bytes,
with ′SESSION IV ′ being a constant diversification string.

The secure channel’s purpose is to ensure confidentiality and integrity of data transiting be-
tween the two trusted peers (the master and the slave). Elements that transit between these peers are
ISO7816 APDUs, and they are subject to some constraints imposed by the ISO781 protocol. Namely,
the format of an APDU is the following:

[CLA][INS][P1][P2][Lc][PAYLOAD]

With [Lc] being the length of the payload [PAYLOAD] (we only deal with short APDU format
in the case of WooKey secure channel). Because of their implication in the ISO7816, [CLA], [INS],
[P1], [P2] and [Lc] cannot be easily encrypted. Since they do not convey confidential data in the
case of WooKey, this is not an issue. They are however covered by the APDU integrity check (see
below). The secure channel uses an encrypt-then-MAC paradigm. The responses from the slave
have the following form:

[ANSWER PAYLOAD][SW1][SW2]

The slave’s answers encryption and MAC follow the same logic as for the master’s commands,
with [SW1] and [SW2] being strongly bound to the ISO7816 protocol and hence not encrypted (but
covered by the MAC integrity).

APDU encryption: [PAYLOAD] is encrypted using the secure channel encryption key, AES-
128-CTR and an IV equal to the current value of the IV (fresh random IV from ECDH ensures no
reuse of old IVs):

APDU integrity: the integrity of the whole APDU is computed using HMAC-SHA256 with a
prepended IV value for anti-replay on the encrypted payload (encrypt-then-MAC):

Tag command = HMAC−SHA256(IV ||CLA||INS||P1||P2||Lc||enc(PAY LOAD)

ANSSI-CC-xxx-P-xx/i.j 31/37

WooKey Security Target Evaluation

The slave’s answer MAC is computed as follows:

Tag answer = HMAC−SHA256(SW1||SW2||enc(ANSWER PAY LOAD))

The MAC tags are appended to the encrypted payload, and the APDU is reformatted (with
conforming Lc that takes into account the MAC) to be conforming to the ISO7816 protocol.

IV handling: for each APDU, IV is incremented by the number of encrypted 16 bytes AES
blocks (with PAYLOAD of size strictly less than a block counting for zero). In order to cover payloads
strictly smaller than an AES block (including empty payloads), the IV is also always incremented by
one.

Session keys update: in order to bind the secure channel with the PetPIN and UserPIN, the
channel encryption and MAC keys are diversified whenever the user enters a PIN. When the PIN is
entered by the user, it is padded to a 16 bytes length with the last byte corresponding to its real size:

Padded PIN = PIN ||00|| ...||00||len(PIN)

The original PIN length is strictly less than 16 bytes (this is a hard limitation in the WooKey
SDK and platform). The secure channel keys diversification use the following scheme (where enc key
is the original AES-128-CTR encryption key, and hmac key is the original HMAC key):

Diversi f ied enc key = enc key⊕SHA256(Padded PIN|| IV)[0 : 16]
Diversi f ied hmac key = hmac key⊕SHA256(Padded PIN|| IV)

Here, IV is the current value of the IV.
Sensitive data (over-)encryption: in addition to the regular encryption of the secure channel,

some sensitive data transiting inside the secure channel are also encrypted using a key derived from
the UserPIN and the first IV (i.e. the IV derived from the ECDH value Q′′x). Hence, let First IV =
SHA256(′SESSION IV ′||Q′′x). The derived key is computed from the original (unpadded) UserPIN
as follows:

Sensitive data key = SHA256(First IV || SHA256(UserPIN))

This key is used as an AES-128-CBC encryption key, with the current secure channel IV as
Initialization Vector. There is no padding issue here since the sensitive data that are encrypted are
ensured (by choice/design) to be aligned on an AES 16 bytes block size. In WooKey, the sensitive
data that is encrypted using this scheme is the Master Secret Key (MSK, asset [A9]).

2.2.2. Local keys (enc/dec)ryption

The WooKey platform contains two pairs of ECDSA keys for the secure channel, one for the nom-
inal mode and one for the DFU mode. Each ECDSA key pair is used in conjunction with the as-
sociated token (AUTH or DFU). The AUTH ECDSA key pairs are denoted ECDSAAUT H plat

priv and

ECDSAAUT H plat
pub for the platform side, and ECDSAAUT H token

priv and ECDSAAUT H token
pub for the AUTH

token side. The DFU ECDSA key pairs are denoted ECDSADFU plat
priv and ECDSADFU plat

pub for the
platform side, and ECDSADFU token

priv and ECDSADFU token
pub for the DFU token side.

ANSSI-CC-xxx-P-xx/i.j 32/37

WooKey Security Target Evaluation

The host PC that is used to sign firmwares uses a dedicated ECDSA key pair. These keys are
denoted ECDSASIG plat

priv and ECDSASIG plat
pub . On the SIG token side, the corresponding key pair is

denoted ECDSASIG token
priv and ECDSASIG token

pub .
In addition to secure channel associated keys, the firmware signature key pair is denoted

ECDSAFirm
priv and ECDSAFirm

pub . The key pair is enclosed solely in the SIG token, and the public part
ECDSAFirm

pub is present in the DFU platform to check the signature during DFU updates.
Platform nominal mode/AUTH token:

On the platform, in nominal mode, ECDSAAUT H plat
priv , ECDSAAUT H plat

pub and ECDSAAUT H token
pub are

stored encrypted and integrity protected. They correspond to asset [A8] for the nominal token and
mode. The encryption makes use of AES-128-CTR with a random IV that is denoted plat AUT H IV
in the following. Let the encrypted platform keys be:

EPKAUT H =
AES−128−CT R(plat AUT H IV,ECDSAAUT H token

pub ||ECDSAAUT H plat
priv || ECDSAAUT H plat

pub)

using the AUTH Key Platform Key KPK (asset [A7]). The AUTH KPK is enclosed inside the
AUTH token flash, it is 512-bit long and is made of a 128-bit AES-128-CTR key (first 128 bits of the
512 bits) and a 256-bit HMAC-SHA256 key (last 256 bits of the 512 bits).

The HMAC tag is computed on the following data using the HMAC-SHA256 key part of the
AUTH KPK:

TagAUT H = HMAC−SHA−256(plat AUT H IV ||plat AUT H SALT || EPKAUT H)

Then, the following data are stored in the internal flash of the platform (inside the firmware):

plat AUT H IV || plat AUT H SALT || TagAUT H || EPKAUT H

Platform DFU mode/DFU token:
On the platform, in DFU mode, ECDSADFU plat

priv , ECDSADFU plat
pub , ECDSADFU token

pub and ECDSAFirm
pub

are stored encrypted and integrity protected. They correspond to asset [A8] for the DFU token and
mode. The encryption makes use of AES-128-CTR with a random IV that is denoted plat DFU IV
in the following. Let the encrypted platform keys be:

EPKDFU = AES−128−
CT R(plat DFU IV,ECDSADFU token

pub ||ECDSADFU plat
priv || ECDSADFU plat

pub || ECDSAFirm
pub)

using the DFU Key Platform Key KPK (asset [A7]). The DFU KPK is enclosed inside the DFU
token flash, it is 512-bit long and is made of a 128-bit AES-128-CTR key (first 128 bits of the 512
bits) and a 256-bit HMAC-SHA256 key (last 256 bits of the 512 bits).

The HMAC tag is computed on the following data using the HMAC-SHA256 key part of the
DFU KPK:

TagDFU = HMAC−SHA−256(plat DFU IV ||plat DFU SALT || EPKDFU)

Then, the following data are stored in the internal flash of the platform (inside the firmware):

ANSSI-CC-xxx-P-xx/i.j 33/37

WooKey Security Target Evaluation

plat DFU IV || plat DFU SALT || TagDFU || EPKDFU

PC host for firmware signature/SIG token:

On the PC host platform, ECDSASIG plat
priv , ECDSASIG plat

pub , ECDSASIG token
pub and ECDSAFirm

pub are
stored encrypted and integrity protected. They correspond to asset [A8] for the SIG token and mode.
The encryption makes use of AES-128-CTR with a random IV that is denoted plat SIG IV in the
following. Let the encrypted platform keys be:

EPKSIG =
AES−128−CT R(plat SIG IV,ECDSASIG token

pub ||ECDSASIG plat
priv || ECDSASIG plat

pub || ECDSAFirm
pub)

using the SIG Key Platform Key KPK (asset [A7]). The SIG KPK is enclosed inside the SIG
token flash, it is 512-bit long and is made of a 128-bit AES-128-CTR key (first 128 bits of the 512
bits) and a 256-bit HMAC-SHA256 key (last 256 bits of the 512 bits).

The HMAC tag is computed on the following data using the HMAC-SHA256 key part of the
SIG KPK:

TagSIG = HMAC−SHA−256(plat SIG IV ||plat SIG SALT || EPKSIG)

Then, the following data are stored in the internal flash of the platform (inside the firmware):

plat SIG IV || plat SIG SALT || TagSIG|| EPKSIG

Computing the (AUTH, DFU, SIG) KPK for local keys decryption:

The Key Platform Key KPK (for each token AUTH/DFU/SIG) is made of 512 bits. A 128-bit
AES key used for AES-128-CTR to decrypt the EPK local platform keys is extracted from the first
128 bits, and a 256-bit HMAC-SHA256 key is extracted from the last 256 bits. This key is enclosed
encrypted in the corresponding token and provisioned (encrypted) during the manufacturing phase
of WooKey. It is encrypted with the Derived Key DK (asset [A5]) using AES-128-ECB on the four
128-bit parts of the KPK, knowing that DK is also 512 bits and made of four 128 bits sub-keys.

DK = DK0|| DK1|| DK2||DK3, four 128-bit parts

KPK = AES−128−ECBDK0(EPK0)||AES−128−ECBDK1(EPK1)||
AES−128−ECBDK2(EPK2)||AES−128−ECBDK3(EPK3)

with AES decryption on four 128-bit parts.

The 512-bit Derived Key DK is computed from the PetPIN when it is entered by the user using
PBKDF2-SHA512, with a salt of 128 bits provided by the plat f orm XXX SALT (XXX being AUTH,
DFU or SIG depending on the context), and with 4096 iterations.

In order to limit brute-force attacks and given the fact that 4096 iterations are quite low (imposed
by the fact that our MCU horsepower is quite limited), the KPK key decryption timing in the token is
incremented until a secure channel is properly mounted (meaning that the PetPIN and platform keys
were OK).

ANSSI-CC-xxx-P-xx/i.j 34/37

WooKey Security Target Evaluation

2.3. DFU and Firmware encryption/signature details
The WooKey device makes use of encryption and signing for the firmware. Because it is complex
for a MCU to store and check an encrypted firmware in its very limited SRAM, we have chosen to
decrypt the firmware and then check the signature on the clear text in flash.

Encrypted and signed firmware generation: in the firmware signature case, we have two par-
ties: a host PC that is the master, and the SIG token that is the slave. The two parties first mount a
secure channel as described in Appendix.2.2., and then the user presents his UserPIN to fully unlock
the SIG token features.

First of all, the PC computes the SHA256 value of the firmware to be encrypted and signed, and
asks the token to sign this value using ECDSA-SHA256, meaning that the token replies with:

Firm sig = ECDSA−SHA256(ECDSAFirm
priv , f irmware)

where firmware is the firmware raw binary in clear text. Note that the double SHA256 hash
is due to the Javacard ECDSA API limitation since this API does not offer raw signature (but only
modes combined with a hash function).

The user can now ask the token to generate a HMAC for the firmware header by sending a
firmware header denoted HDR raw and containing a magic value on 4 bytes, the partition type (FLIP
or FLOP) on 4 bytes, the length of the padding data in the header and before the payload on 4
bytes (this padding is mainly due to DFU protocol constraints), the signature length on 4 bytes, the
firmware encryption chunk size on 4 bytes, and finally the signature Firm sig previously computed on
64 bytes (this is the typical concatenation of r and s as a result of ECDSA). The token then responds
IV ||HMAC− SHA256(HDR), with the HMAC computed using the Key HMAC Device Firmware
Update KHDFU (asset [A10]) key (a 32 bytes dedicated key), and HDR being the header containing
the randomly generated IV (see Figure 6 for the overview of the elements covered by the HMAC and
the introduction of the IV). The full header HDR containing both the signature and the HMAC can
then be composed by the host PC with the various pieces (metadata, signature, etc.).

After this, the PC is ready to perform the firmware encryption. For every chunk of firmware
(that is split in equal part of maximum size of the chunk size sent to the token), a new encryption key
DKi (assets [A12]) is asked to the token by sending the value i, with DKi being computed as follows:

DKi = AES−128−CBC(IV + i)

with encryption key denoted KDDFU ENC, and with an IV denoted KDDFU IV (the KDDFU
asset [A11] is a 32 bytes long value split in two 16 bytes long values: first 16 bytes are KDDFU ENC,
second 16 bytes are KDDFU IV).

These DKi keys are used to encrypt the firmware chunks using AES-128-CTR and null IVs:

Encrypted f irmware chunki = AES−128−CT R(f irmware chunki)

Then, all the encrypted firmware chunks are concatenated together and the resulting binary is
the exact same size of the original firmware thanks to the counter mode. The HMACed header HDR
is padded to the next 4096 bytes boundary with a zero padding, and then the raw binary encrypted
firmware is concatenated. The zero padding is useful because of the way the USB DFU protocol

ANSSI-CC-xxx-P-xx/i.j 35/37

WooKey Security Target Evaluation

truncates its own chunks, and because a header validation will be asked to the user before installing
the update. This padding is not covered by any integrity check, but it is always skipped by the device
when updating and never interpreted/parsed, so it should not induce security issues. The length of such
padding is enclosed in the HMACed header HDR ensuring that no ambiguous skipping is performed
when receiving a firmware.

Encrypted and signed firmware installation:

The user first establishes a secure channel using his PetPIN with the DFU token, confirms the
PetName, and unlocks the DFU token with his UserPIN.

When the user sends a signed firmware using dfu-util, the first DFU chunk of 4096 bytes is
sent to the device that pauses the DFU upload. The header is parsed, the padding is ignored, and the
header HMAC is checked by interacting with the DFU token. This token contains the same KDDFU
(asset [A11]) and KHDFU (asset [A10]) as the SIG token, and is able to open a decryption session
and to derive the sessions keys DKi.

Once the HMAC of the header HDR is checked, a strict anti-rollback check is performed, and
the user is asked to validate the firmware through the touchscreen (the version and the magic of the
firmware, recovered from the header, are printed). After hitting OK, the full firmware is sent and
transparently decrypted through session keys injected in the platform hardware accelerator and AES-
CTR running.

Whenever the decrypted firmware chunks have been deciphered in the STM32 internal flash,
the firmware ECDSA signature verification is performed on the clear text flash content. Only when
this signature is checked to be OK the hash value of the new firmware is copied in the boot partition,
and the boot partition flag is atomically set to one.

After reboot, the bootloader checks the flag, and if it is OK the SHA256 hash of the partition to
boot is computed and checked. Any error here yields in a reboot.

2.4. User data encryption details (AES-256-CBC-ESSIV)
User data on the SD card are encrypted using AES-256-CBC-ESSIV, with the master key MSK (asset
[A9]) of 256-bit being stored inside the AUTH token, and only provided after a full unlocking of this
token.

The CBC-ESSIV mode makes use of the hash value of MSK in order to compute the Initializa-
tion Vectors of the encryption of each sector:

ESSIV key = SHA256(MSK)

A sector here is a SCSI sector, configurable at firmware compilation from 512 bytes to 4096
bytes in WooKey. Hence, a new IV is derived for each sector from the sector number and a value
derived from the SD card unique serial number (SD CID register value of 128 bits obtained through
the SDIO command 10) using the ESSIV key:

Encrypted sector i = AES−256−CBC(sectori)
with ESSIV key as encryption key and:

IV = AES−256−ECB(encode32(i)||SD CARD ID)

ANSSI-CC-xxx-P-xx/i.j 36/37

WooKey Security Target Evaluation

With encode32(i) being the big endian encoding of i on 32 bits, and:

SD CARD ID = SHA256(SD vendor ID||SD serial)[: 12]
(i.e. first 96 bits of the SHA256 of the SD vendor ID concatenated with the serial number).

2.5. Random generation
The random generation makes use of the TRNG (True Random Number Generator) of the STM32
device. This TRNG is not AIS31 certified, and a PRNG should be used on top of it. However, this is
not the case and this a future work in the WooKey project.

ANSSI-CC-xxx-P-xx/i.j 37/37

	Introduction
	Product identification

	Product description
	Product
	Product hardware architecture
	WooKey main SoC: STM32F439
	Data storage
	Touch screen
	Authentication tokens: using the Javacard framework

	Product usage description
	Product software architecture
	WooKey general architecture overview
	Defense in depth strategy
	EwoK microkernel
	Safe languages: using Ada
	Formal methods
	User data confidentiality
	External tokens and user authentication
	Nominal mode software design
	DFU mode software design

	Product life-cycle
	Product environment description
	Product typical users description
	Product evaluation perimeter

	Environment hypothesis description
	Sensitive assets description
	Threats description
	Attackers profiles
	Threats

	Security functions description
	Mappings
	Assets - Threats
	Threats - Security Functions

	Details on cryptography used in WooKey
	Keys/assets generation
	The Secure Channel with the tokens
	Secure channel core
	Local keys (enc/dec)ryption

	DFU and Firmware encryption/signature details
	User data encryption details (AES-256-CBC-ESSIV)
	Random generation

